LeetCode-15-三数之和

题目

给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != ji != kj != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请

你返回所有和为 0 且不重复的三元组。

注意:答案中不可以包含重复的三元组。

示例 1:

1
2
3
4
5
6
7
8
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。
不同的三元组是 [-1,0,1][-1,-1,2]
注意,输出的顺序和三元组的顺序并不重要。

示例 2:

1
2
3
输入:nums = [0,1,1]
输出:[]
解释:唯一可能的三元组和不为 0 。

示例 3:

1
2
3
输入:nums = [0,0,0]
输出:[[0,0,0]]
解释:唯一可能的三元组和为 0

提示:

  • 3 <= nums.length <= 3000
  • -105 <= nums[i] <= 105

题解

orz,自己想的是O(n^2)的解法,默认给否掉了,没想到答案就是O(n^2)的解法...原来也是有复杂度很高的题目的

思路其实还是比较清晰的,先做一个排序,再固定一个数字k,然后ik后面的第一个数字,j为最后一个数字,如果i + j < -k,因为j是最大的数字了,所以只有i往后一个才能相等;

同理如果i + j > -k,因为i是最小的数字了,只有j往前一个才有可能相等;

如果相等了,加入之后i后移,j前移,当ij相遇时循环结束。

和上一题还是很相似的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
// 先排序
Arrays.sort(nums);
List<List<Integer>> res = new ArrayList<>();
for(int k = 0; k < nums.length - 2; k++){
if(nums[k] > 0) break;
if(k > 0 && nums[k] == nums[k - 1]) continue;
int i = k + 1, j = nums.length - 1;
while(i < j){
int sum = nums[k] + nums[i] + nums[j];
if(sum < 0){
while(i < j && nums[i] == nums[++i]);
} else if (sum > 0) {
while(i < j && nums[j] == nums[--j]);
} else {
res.add(new ArrayList<Integer>(Arrays.asList(nums[k], nums[i], nums[j])));
while(i < j && nums[i] == nums[++i]);
while(i < j && nums[j] == nums[--j]);
}
}
}
return res;
}
}

LeetCode-15-三数之和
https://excelius.xyz/leetcode-15-三数之和/
作者
Excelius
发布于
2024年6月23日
许可协议