LeetCode-36-有效的数独

题目

请你判断一个 9 x 9 的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。

  1. 数字 1-9 在每一行只能出现一次。
  2. 数字 1-9 在每一列只能出现一次。
  3. 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)

注意:

  • 一个有效的数独(部分已被填充)不一定是可解的。
  • 只需要根据以上规则,验证已经填入的数字是否有效即可。
  • 空白格用 '.' 表示。

示例 1:

img
1
2
3
4
5
6
7
8
9
10
11
输入:board = 
[["5","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
输出:true

示例 2:

1
2
3
4
5
6
7
8
9
10
11
12
输入:board = 
[["8","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
输出:false
解释:除了第一行的第一个数字从 5 改为 8 以外,空格内其他数字均与 示例1 相同。 但由于位于左上角的 3x3 宫内有两个 8 存在, 因此这个数独是无效的。

提示:

  • board.length == 9
  • board[i].length == 9
  • board[i][j] 是一位数字(1-9)或者 '.'

题解

一开始没看懂题目,以为要用代码填数独,吃一大惊。反复斟酌,原来只是查每行每列每个九宫格是否出现了重复的数字,虚惊一场。

最初的思路就是行Map、列Map和九宫格Map,挨个遍历就好了。先初始化,如果包含了就直接返回false,否则一直查下去都查完了返回true。

进一步的可以使用数组进行优化,这里使用boolean数组更简便,boolean默认值为false也就是不存在,如果当前位置的值存在了,说明出现重复数字,返回false;否则继续查询,直到最后,遍历完成返回true。

需要注意九宫格的处理,小方块的编号idx = ⌊i / 3⌋ * 3 + ⌊j / 3⌋

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class Solution {
public boolean isValidSudoku(char[][] board) {
boolean[][] row = new boolean[10][10], col = new boolean[10][10], area = new boolean[10][10];
for (int i = 0; i < 9; i++) {
for (int j = 0; j < 9; j++) {
int c = board[i][j];
if (c == '.') continue;
int u = c - '0';
int idx = i / 3 * 3 + j / 3;
if (row[i][u] || col[j][u] || area[idx][u]) return false;
row[i][u] = col[j][u] = area[idx][u] = true;
}
}
return true;
}
}

LeetCode-36-有效的数独
https://excelius.xyz/leetcode-36-有效的数独/
作者
Excelius
发布于
2024年7月6日
许可协议