LeetCode-399-除法求值

题目

给你一个变量对数组 equations 和一个实数值数组 values 作为已知条件,其中 equations[i] = [Ai, Bi]values[i] 共同表示等式 Ai / Bi = values[i] 。每个 AiBi 是一个表示单个变量的字符串。

另有一些以数组 queries 表示的问题,其中 queries[j] = [Cj, Dj] 表示第 j 个问题,请你根据已知条件找出 Cj / Dj = ? 的结果作为答案。

返回 所有问题的答案 。如果存在某个无法确定的答案,则用 -1.0 替代这个答案。如果问题中出现了给定的已知条件中没有出现的字符串,也需要用 -1.0 替代这个答案。

注意:输入总是有效的。你可以假设除法运算中不会出现除数为 0 的情况,且不存在任何矛盾的结果。

注意:未在等式列表中出现的变量是未定义的,因此无法确定它们的答案。

示例 1:

1
2
3
4
5
6
7
输入:equations = [["a","b"],["b","c"]], values = [2.0,3.0], queries = [["a","c"],["b","a"],["a","e"],["a","a"],["x","x"]]
输出:[6.00000,0.50000,-1.00000,1.00000,-1.00000]
解释:
条件:a / b = 2.0, b / c = 3.0
问题:a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ?
结果:[6.0, 0.5, -1.0, 1.0, -1.0 ]
注意:x 是未定义的 => -1.0

示例 2:

1
2
输入:equations = [["a","b"],["b","c"],["bc","cd"]], values = [1.5,2.5,5.0], queries = [["a","c"],["c","b"],["bc","cd"],["cd","bc"]]
输出:[3.75000,0.40000,5.00000,0.20000]

示例 3:

1
2
输入:equations = [["a","b"]], values = [0.5], queries = [["a","b"],["b","a"],["a","c"],["x","y"]]
输出:[0.50000,2.00000,-1.00000,-1.00000]

提示:

  • 1 <= equations.length <= 20
  • equations[i].length == 2
  • 1 <= Ai.length, Bi.length <= 5
  • values.length == equations.length
  • 0.0 < values[i] <= 20.0
  • 1 <= queries.length <= 20
  • queries[i].length == 2
  • 1 <= Cj.length, Dj.length <= 5
  • Ai, Bi, Cj, Dj 由小写英文字母与数字组成

题解

这一题关键是往图那边去靠:

给定图中的一些点(变量),和某些边的权值(两个变量的比值),对任意两点(两个变量)求出路径长(两个变量的比值)。

那么就需要遍历equations,将不同的字符串映射为整数。

然后对于每一个查询,从起点出发,通过广搜的方式,不断更新起点和当前点的路径长度,直到搜索到终点为止。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
class Solution {
public double[] calcEquation(List<List<String>> equations, double[] values, List<List<String>> queries) {
int nvars = 0;
Map<String, Integer> variables = new HashMap<String, Integer>();

int n = equations.size();
for (int i = 0; i < n; i++) {
if (!variables.containsKey(equations.get(i).get(0))) {
variables.put(equations.get(i).get(0), nvars++);
}
if (!variables.containsKey(equations.get(i).get(1))) {
variables.put(equations.get(i).get(1), nvars++);
}
}

// 对于每个点,存储其直接连接到的所有点及对应的权值
List<Pair>[] edges = new List[nvars];
for (int i = 0; i < nvars; i++) {
edges[i] = new ArrayList<Pair>();
}
for (int i = 0; i < n; i++) {
int va = variables.get(equations.get(i).get(0)), vb = variables.get(equations.get(i).get(1));
edges[va].add(new Pair(vb, values[i]));
edges[vb].add(new Pair(va, 1.0 / values[i]));
}

int queriesCount = queries.size();
double[] ret = new double[queriesCount];
for (int i = 0; i < queriesCount; i++) {
List<String> query = queries.get(i);
double result = -1.0;
if (variables.containsKey(query.get(0)) && variables.containsKey(query.get(1))) {
int ia = variables.get(query.get(0)), ib = variables.get(query.get(1));
if (ia == ib) {
result = 1.0;
} else {
Queue<Integer> points = new LinkedList<Integer>();
points.offer(ia);
double[] ratios = new double[nvars];
Arrays.fill(ratios, -1.0);
ratios[ia] = 1.0;

while (!points.isEmpty() && ratios[ib] < 0) {
int x = points.poll();
for (Pair pair : edges[x]) {
int y = pair.index;
double val = pair.value;
if (ratios[y] < 0) {
ratios[y] = ratios[x] * val;
points.offer(y);
}
}
}
result = ratios[ib];
}
}
ret[i] = result;
}
return ret;
}
}

class Pair {
int index;
double value;

Pair(int index, double value) {
this.index = index;
this.value = value;
}
}

LeetCode-399-除法求值
https://excelius.xyz/leetcode-399-除法求值/
作者
Excelius
发布于
2024年8月2日
许可协议